skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Brennan, S J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. SN 2021adxl is a slowly evolving, luminous, Type IIn supernova with asymmetric emission line profiles, similar to the well-studied SN 2010jl. We present extensive optical, near-ultraviolet, and near-infrared photometry and spectroscopy covering ∼1.5 years post discovery. SN 2021adxl occurred in an unusual environment, atop a vigorously star-forming region that is offset from its host galaxy core. The appearance of Lyαand O II, as well as the compact core, would classify the host of SN 2021adxl as a “Blueberry” galaxy, analogous to higher redshift, low-metallicity, star-forming dwarf “Green Pea” galaxies. Using several abundance indicators, we find a metallicity of the explosion environment of only ∼0.1 Z, the lowest reported metallicity for a Type IIn SN environment. SN 2021adxl reaches a peak magnitude ofMr ≈ −20.2 mag and since discovery, SN 2021adxl has faded by only ∼4 magnitudes in therband with a cumulative radiated energy of ∼1.5 × 1050erg over 18 months. SN 2021adxl shows strong signs of interaction with a complex circumstellar medium, seen by the detection of X-rays, revealed by the detection of coronal emission lines, and through multi-component hydrogen and helium profiles. In order to further understand this interaction, we model the Hαprofile using a Monte Carlo electron scattering code. The blueshifted high-velocity component is consistent with emission from a radially thin spherical shell resulting in the broad emission components due to electron scattering. Using the velocity evolution of this emitting shell, we find that the SN ejecta collide with circumstellar material of at least ∼5 Massuming a steady-state mass-loss rate of ∼4 − 6 × 10−3Myr−1for the first ∼200 days of evolution. SN 2021adxl was last observed to be slowly declining at ∼0.01 mag d−1, and if this trend continues, SN 2021adxl will remain observable after its current solar conjunction. Continuing the observations of SN 2021adxl may reveal signatures of dust formation or an infrared excess, similar to that seen for SN 2010jl. 
    more » « less
  2. SN 2020zbf is a hydrogen-poor superluminous supernova (SLSN) atz = 0.1947 that shows conspicuous C IIfeatures at early times, in contrast to the majority of H-poor SLSNe. Its peak magnitude isMg = −21.2 mag and its rise time (≲26.4 days from first light) places SN 2020zbf among the fastest rising type I SLSNe. We used spectra taken from ultraviolet (UV) to near-infrared wavelengths to identify spectral features. We paid particular attention to the C IIlines as they present distinctive characteristics when compared to other events. We also analyzed UV and optical photometric data and modeled the light curves considering three different powering mechanisms: radioactive decay of56Ni, magnetar spin-down, and circumstellar medium (CSM) interaction. The spectra of SN 2020zbf match the model spectra of a C-rich low-mass magnetar-powered supernova model well. This is consistent with our light curve modeling, which supports a magnetar-powered event with an ejecta massMej = 1.5 M. However, we cannot discard the CSM-interaction model as it may also reproduce the observed features. The interaction with H-poor, carbon-oxygen CSM near peak light could explain the presence of C IIemission lines. A short plateau in the light curve around 35–45 days after peak, in combination with the presence of an emission line at 6580 Å, can also be interpreted as being due to a late interaction with an extended H-rich CSM. Both the magnetar and CSM-interaction models of SN 2020zbf indicate that the progenitor mass at the time of explosion is between 2 and 5M. Modeling the spectral energy distribution of the host galaxy reveals a host mass of 108.7M, a star formation rate of 0.24−0.12+0.41Myr−1, and a metallicity of ∼0.4Z
    more » « less
  3. Obtaining spectroscopic observations of the progenitors of core-collapse supernovae is often unfeasible, due to an inherent lack of knowledge as to what stars experience supernovae and when they will explode. In this Letter we present photometric and spectroscopic observations of the progenitor activity of SN 2023fyq before the He-rich progenitor explodes as a Type Ibn supernova. The progenitor of SN 2023fyq shows an exponential rise in flux prior to core collapse. Complex He Iemission line features are observed in the progenitor spectra, with a P Cygni-like profile, as well as an evolving broad base with velocities of the order of 10 000 km s−1. The luminosity and evolution of SN 2023fyq is consistent with a Type Ibn, reaching a peakr-band magnitude of −18.8 mag, although there is some uncertainty regarding the distance to the host, NGC 4388, which is located in the Virgo cluster. We present additional evidence of asymmetric He-rich material being present both prior to and after the explosion of SN 2023fyq, which suggests that this material survived the ejecta interaction. Broad [O I], C I, and the Ca IItriplet lines are observed at late phases, confirming that SN 2023fyq was a genuine supernova, rather than a non-terminal interacting transient. SN 2023fyq provides insight into the final moments of a massive star’s life, demonstrating that the progenitor is likely highly unstable before core collapse. 
    more » « less
  4. ABSTRACT We present an in-depth study of the late-time near-infrared plateau in Type Ia supernovae (SNe Ia), which occurs between 70 and 500 d. We double the existing sample of SNe Ia observed during the late-time near-infrared plateau with new observations taken with the Hubble Space Telescope, Gemini, New Technology Telescope, the 3.5-m Calar Alto Telescope, and the Nordic Optical Telescope. Our sample consists of 24 nearby SNe Ia at redshift < 0.025. We are able to confirm that no plateau exists in the Ks band for most normal SNe Ia. SNe Ia with broader optical light curves at peak tend to have a higher average brightness on the plateau in J and H, most likely due to a shallower decline in the preceding 100 d. SNe Ia that are more luminous at peak also show a steeper decline during the plateau phase in H. We compare our data to state-of-the-art radiative transfer models of nebular SNe Ia in the near-infrared. We find good agreement with the sub-Mch model that has reduced non-thermal ionization rates, but no physical justification for reducing these rates has yet been proposed. An analysis of the spectral evolution during the plateau demonstrates that the ratio of [Fe ii] to [Fe iii] contribution in a near-infrared filter determines the light curve evolution in said filter. We find that overluminous SNe decline slower during the plateau than expected from the trend seen for normal SNe Ia. 
    more » « less
  5. ABSTRACT We present the results from a high-cadence, multiwavelength observation campaign of AT 2016jbu (aka Gaia16cfr), an interacting transient. This data set complements the current literature by adding higher cadence as well as extended coverage of the light-curve evolution and late-time spectroscopic evolution. Photometric coverage reveals that AT 2016jbu underwent significant photometric variability followed by two luminous events, the latter of which reached an absolute magnitude of MV ∼ −18.5 mag. This is similar to the transient SN 2009ip whose nature is still debated. Spectra are dominated by narrow emission lines and show a blue continuum during the peak of the second event. AT 2016jbu shows signatures of a complex, non-homogeneous circumstellar material (CSM). We see slowly evolving asymmetric hydrogen line profiles, with velocities of 500 km s−1 seen in narrow emission features from a slow-moving CSM, and up to 10 000 km s−1 seen in broad absorption from some high-velocity material. Late-time spectra (∼+1 yr) show a lack of forbidden emission lines expected from a core-collapse supernova and are dominated by strong emission from H, He i, and Ca ii. Strong asymmetric emission features, a bumpy light curve, and continually evolving spectra suggest an inhibit nebular phase. We compare the evolution of H α among SN 2009ip-like transients and find possible evidence for orientation angle effects. The light-curve evolution of AT 2016jbu suggests similar, but not identical, circumstellar environments to other SN 2009ip-like transients. 
    more » « less
  6. ABSTRACT We present the bolometric light curve, identification and analysis of the progenitor candidate, and preliminary modelling of AT 2016jbu (Gaia16cfr). We find a progenitor consistent with a ∼ 22–25 M⊙ yellow hypergiant surrounded by a dusty circumstellar shell, in agreement with what has been previously reported. We see evidence for significant photometric variability in the progenitor, as well as strong Hα emission consistent with pre-existing circumstellar material. The age of the environment, as well as the resolved stellar population surrounding AT 2016jbu, supports a progenitor age of >10 Myr, consistent with a progenitor mass of ∼22 M⊙. A joint analysis of the velocity evolution of AT 2016jbu and the photospheric radius inferred from the bolometric light curve shows the transient is consistent with two successive outbursts/explosions. The first outburst ejected material with velocity ∼650 km s−1, while the second, more energetic event ejected material at ∼4500 km s−1. Whether the latter is the core collapse of the progenitor remains uncertain. We place a limit on the ejected 56Ni mass of <0.016 M⊙. Using the Binary Population And Spectral Synthesis (BPASS) code, we explore a wide range of possible progenitor systems and find that the majority of these are in binaries, some of which are undergoing mass transfer or common-envelope evolution immediately prior to explosion. Finally, we use the SuperNova Explosion Code (SNEC) to demonstrate that the low-energy explosions within some of these binary systems, together with sufficient circumstellar material, can reproduce the overall morphology of the light curve of AT 2016jbu. 
    more » « less